skip to main content


Search for: All records

Creators/Authors contains: "Ievlev, Anton V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available August 2, 2024
  3. The unique physical properties of two-dimensional (2D) metal halide perovskites (MHPs) such as nonlinear optics, anisotropic charge transport, and ferroelectricity have made these materials promising candidates for multifunctional applications. Recently, fluorine derivatives such as 4,4-difluoropiperidinium lead iodide perovskite or (4,4-DFPD, C 5 H 10 F 2 N) 2 PbI 4 have shown strong ferroelectricity as compared to other 2D MHPs. Although it was previously addressed that the ferroelectricity in MHPs can be affected by illumination, the underlying physical mechanisms of light–ferroelectricity interaction in 2D MHPs are still lacking. Here, we explore the electromechanical responses in 4,4-(DFPD) 2 PbI 4 thin films using advanced scanning probe microscopy techniques revealing ferroelectric domain structures. Hysteretic ferroelectric loops measured by contact-Kelvin probe force microscopy are dependent on domain structures under dark conditions, while ferroelectricity weakens under illumination. The X-ray diffraction patterns exhibit significant changes in preferential orientation of individual lattice planes under illumination. Particularly, the reduced intensity of the (1 1 1) lattice plane under illumination leads to transitioning from a ferroelectric to a paraelectric phase. The instability of positive ions, especially molecular organic cations, is observed under illumination by time-of-flight secondary ion mass spectrometry. The combination of crystallographic orientation and chemical changes under illumination clearly contributes to the origin of light–ferroelectricity interaction in 2D (4,4-DFPD, C 5 H 10 F 2 N) 2 PbI 4 . 
    more » « less
  4. Abstract

    Mixed cesium‐ and formamidinium‐based metal halide perovskites (MHPs) are emerging as ideal photovoltaic materials due to their promising performance and improved stability. While theoretical predictions suggest that a larger composition ratio of Cs (≈30%) aids the formation of a pure photoactive α‐phase, high photovoltaic performances can only be realized in MHPs with moderate Cs ratios. In fact, elemental mixing in a solution can result in chemical complexities with non‐equilibrium phases, causing chemical inhomogeneities localized in the MHPs that are not traceable with global device‐level measurements. Thus, the chemical origin of the complexities and understanding of their effect on stability and functionality remain elusive. Herein, through spatially resolved analyses, the fate of local chemical structures, particularly the evolution pathway of non‐equilibrium phases and the resulting local inhomogeneities in MHPs is comprehensively explored. It is shown that Cs‐rich MHPs have substantial local inhomogeneities at the initial crystallization step, which do not fully convert to the α‐phase and thereby compromise the optoelectronic performance of the materials. These fundamental observations allow the authors to draw a complete chemical landscape of MHPs including nanoscale chemical mechanisms, providing indispensable insights into the realization of a functional materials platform.

     
    more » « less